Wavelet Based Feature Extraction of Electromyogram Signal for Denoising

نویسندگان

  • Tanu Sharma
  • Karan Veer
چکیده

Electrical signals recorded from muscles require processing before its use, so the modeling of these bioelectric signals is necessary. Wavelets are used for the processing of signals that are non-stationary and time varying. The surface Electromyogram signals were estimated with following steps, first, the obtained signal was decomposed using wavelet transform; then, decomposed coefficients were analyzed by threshold methods. With the appropriate choice of wavelet, it is possible to remove interference noise effectively in order to analyze the signal. This paper presents a comparative study of different Daubechies wavelets (db2-db14) family for analysis of arm motions. From the analyzed results, it was inferred that wavelet db4 performs denoising best among the wavelets and is suitable for accurate classification of surface Electromyogram signal. Because of the wavelet denoising, accurate observation of activity that is not possible with conventional filtering, becomes possible.

منابع مشابه

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition

Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...

متن کامل

Performance Improvement of Radar Target Detection by Wavelet-based Denoising Methods

With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...

متن کامل

Performance Improvement of Radar Target Detection by Wavelet-based Denoising Methods

With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...

متن کامل

Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?

Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014